Ion-gated channel induced in planar bilayers by incorporation of (Na+,K+)-ATPase.

نویسندگان

  • T A Last
  • M L Gantzer
  • C D Tyler
چکیده

An ion-gated channel was conferred on a planar lipid bilayer membrane upon incorporation of (Na+,K+)-ATPase. The channel exhibited two conductance states. The high conductance state was only observed when an ion gradient was present across the planar membrane. This state corresponded to an enzyme conformation which was ouabain and vanadate sensitive (i.e. conductance was inhibited by these compounds), while the low conductance state showed no sensitivity to either inhibitor. Single channel conductance behavior was observed when minimal amounts of enzyme were incorporated into the planar bilayer. The observed single channel conductance was 270 +/- 14 picosiemens. Similar transport behavior was observed for enzyme purified from ovine kidney using sodium dodecyl sulfate (anionic), eel electroplax using Lubrol-WX (nonionic), and kidney microsomes. In addition, the data strongly suggest that enzyme from the kidney microsomes was asymmetrically incorporated into the planar bilayer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels.

The glycine receptor belongs to the ligand-gated ion channel superfamily. It is a chloride conducting channel composed of four transmembrane domains. It was previously shown that the second transmembrane domain (M2) of the glycine receptor forms an ion conduction pathway throughout lipid bilayers. The amino-acid sequence of the transmembrane segment M2 of the glycine receptor has a high homolog...

متن کامل

اثرات میدان الکترومغناطیسی تلفن همراه بر عملکرد تک نانوکانال پروتیینی OmpF: یک رویکرد تجربی

Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 4  شماره 

صفحات  -

تاریخ انتشار 1983